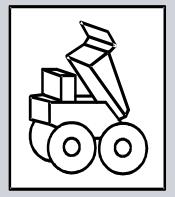
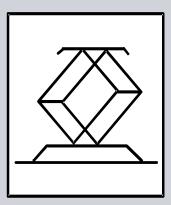
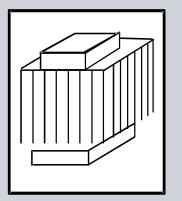
Truck Trolley System

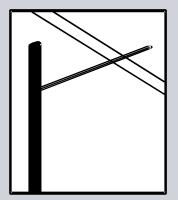
Albrecht Brodkorb 26.8.2014

Truck trolley in operation

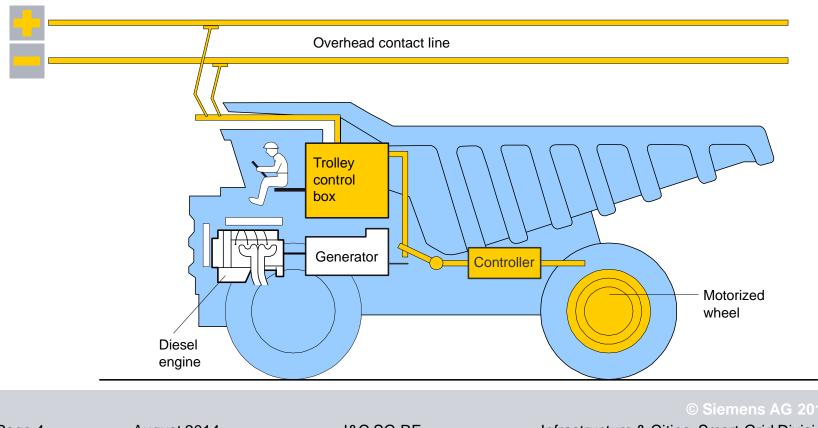

© Siemens AG 2014 Infrastructure & Cities; Smart Grid Division


August 2014


Page 2


Truck Trolley System Main Subsystems – Overview

SIEMENS



- Modification of trucks enabling them to operate under trolley
- Truck equipment with pantograph and pantograph sensor system
- Substation
- Overhead catenary system

Truck Trolley System Basic concept

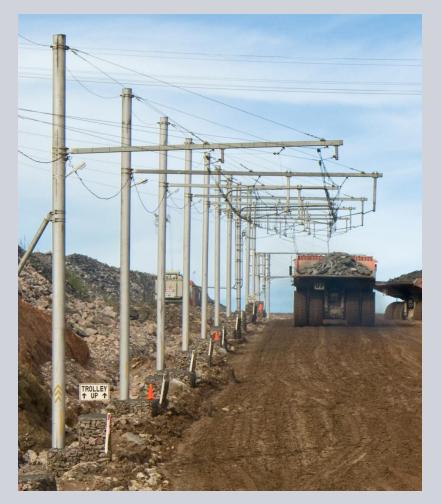
- The power is collected from a DC overhead line by means of 2 pantographs.
- Additional control devices apply the correct power to the motorized wheels

Page 4

August 2014

I&C SG RE

Truck Trolley System Overhead Catenary System


SIEMENS

Two conductors are necessary

Each conductor is formed as an catenary, supported using poles and cantilevers positioned max. 40 m apart.

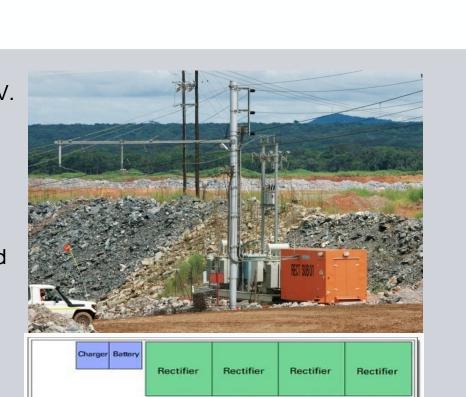
Typically with two contact wires and one/two messenger wires per catenary.

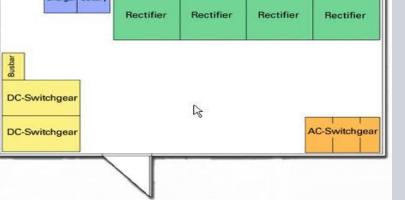
All wires are automatic tensioned. The mechanical tension of the contact wires and the messenger wires is 12 kN / 10 kN per wire.

© Siemens AG 2014 Infrastructure & Cities; Smart Grid Division

Truck Trolley System Feeding Substation

Medium Voltage 3 Phase connection 6..30 kV.


Power per substation 2,5 ... 10 MW


Feeding range 0,8 .. 2 km

The nominal voltage of the trolley system and the power per substation depend on the specific operating conditions at the mine.

All equipment, except transformer, is protected from dust and moisture, housed in an air-conditioned, hermetically sealed container

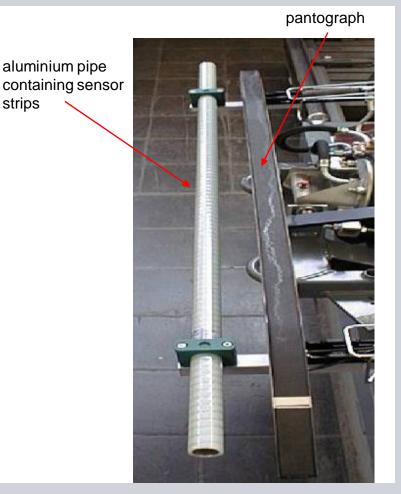
Equipment is delivered mostly pre-installed and ready for commissioning.

SIEMENS

Page 6

Truck Trolley System Pantograph Sensor System I – Components

SIEMENS


The pantograph sensor system ensures that the truck operates safely under the contact wire and that there is no damage to the overhead line. It consists of

- the sensor strips
- a box for electronic components
- the display

Sensor strips:

The sensor strips are inserted into the aluminium pipe, which is mounted on the pantograph.

© Siemens AG 2014 Infrastructure & Cities; Smart Grid Division

Truck Trolley System Benefits

SIEMENS

Reduced operating costs

- Energy cost savings
- Diesel engine overhaul cost savings

Increased productivity


- Increase in truck speed
- Shorter turn-around times

Easy maintainability

- Use of standard components
- Less heating of wheel motor

Environmental benefits

Fuel savings of up to 30 %

Economic Evaluation Examples

SIEMENS

SIEMENS

Truck Trolley

Economic Benefits

5.4.2012

Page 1 04-2012

I&C SG RE Infras

© Siemens AG 2012 Infrastructure & Cities Sector, Smart Grid Division

Truck Trolley – Example Swedish Conditions Budgetary Parameters

25.8.2014

Page 1 04-2012

I&C SG RE Inf

© Siemens AG 2012 Infrastructure & Cities Sector, Smart Grid Division

Truck Trolley Systems for Open-Pit Mining

- Most economical on ramps,
 where most of the total
 energy is consumed.
- Normal case: trucks drive uphill at ramps with high gradient from loading point to unloading point.
- Trolley is only installed on the uphill lines. Downhill the benefits of fuel saving or increase in speed would be minimal.

Application Guidelines

Trolley Assist is worth considering if a mine has:

- High differential between electrical power and diesel fuel price
- "Long" life of ramps
- Deep pit with long ramps
- Semi-permanent ramp network
- Well constructed and maintained haul roads

© Siemens AG 2014 Infrastructure & Cities; Smart Grid Division

August 2014

Contact line installation - 1

© Siemens AG 2014 Infrastructure & Cities; Smart Grid Division

Page 12

August 2014

Contact line installation – 2

© Siemens AG 2014 Infrastructure & Cities; Smart Grid Division

Page 13

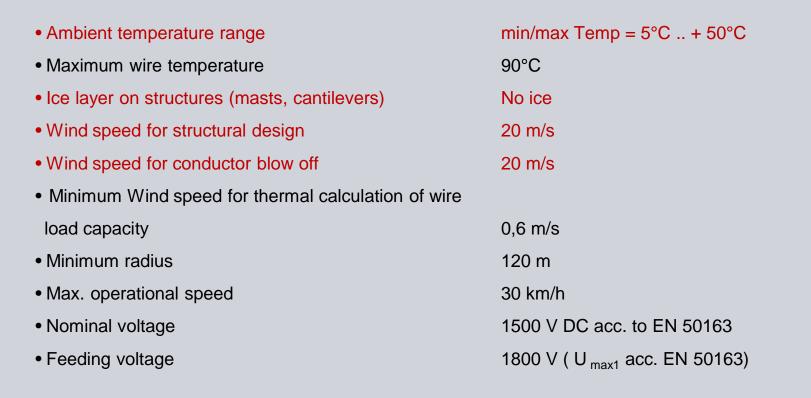
August 2014

Substation installation

© Siemens AG 2014 Infrastructure & Cities; Smart Grid Division

Page 14

Commissioning



Page 15

August 2014

I&C SG RE

Truck Trolley Standard climate and design parameters

!! needs to be adjusted for use in Sweden

SIEMENS

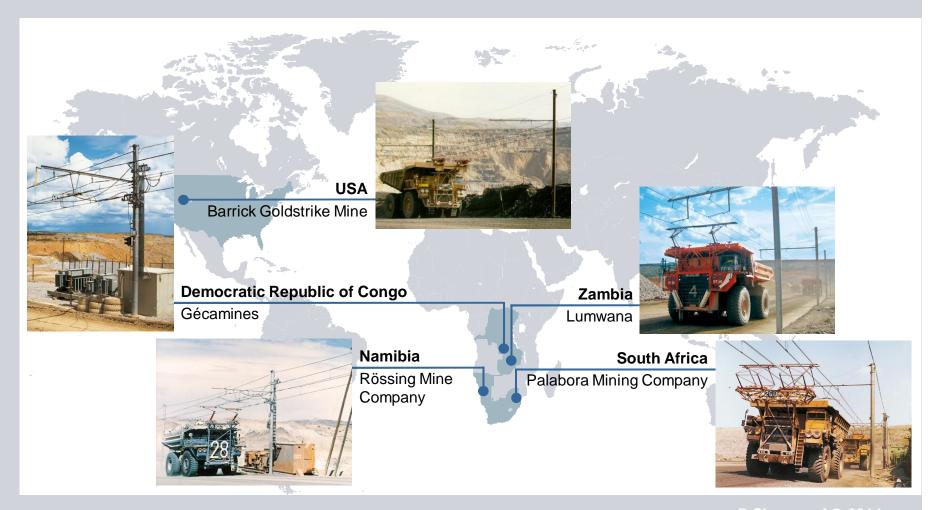
Infrastructure & Cities; Smart Grid Division

Page 16

Truck Trolley System Optimum Support in all Project Phases

SIEMENS

- Feasibility study
- Design concept
- Operational concept
- Financing concepts


- Electrical and mechanical
- equipment
- Civil works
- Installation, commissioning, system integration tests, training, acceptance and approval

- After-sales
- Maintenance
- Operation
- System extension

Pre-award		Implementation	Post-completion
Consulting system des		System engineering, project and interface management	Maintenance and extensions
			© Siemens AG 2014
Page 17	August 2014	I&C SG RE	Infrastructure & Cities; Smart Grid Division

Truck Trolley System References – Overview

SIEMENS

© Siemens AG 2014 Infrastructure & Cities; Smart Grid Division

August 2014

Truck Trolley System References – Details

Customer, Country	Route Length	Voltage	Substation Rating	Number of Substations	Total Converted Trucks	Commi- ssioning	Project Scope
Lumwana Mining Company, Zambia	4.0 km	2,400 V	10.0 MVA	5	27	2009	Catenary system and substations
Barrick Goldstrike Mine, USA	5.5 km	1,500 V	6.5 MVA	7	11	1994	Catenary system and substations
Gécamines, Democratic Republic of Congo	3.5 km	1,200 V	2.4 MVA	4	22	1986/89	Turnkey project
Rössing Mine Company, Namibia	8.5 km	1,200 V	3.0 MVA	5	30	1986	Catenary system and substations
Palabora Mining Company, South Africa	8.0 km	1,200 V	5.0 MVA	7	80	1981	Catenary system and substations

© Siemens AG 2014 Infrastructure & Cities; Smart Grid Division

Page 19

Multi truck operation

© Siemens AG 2014 Infrastructure & Cities; Smart Grid Division

Page 20 A

August 2014

Truck Trolley System Thank You for Your Attention

© Siemens AG 2014 Infrastructure & Cities; Smart Grid Division

August 2014

Page 21

Truck Trolley – Example Swedish Conditions Budgetary Parameters

25.8.2014

Page 1

04-2012

I&C SG RE

Siemens AG 2012
Infrastructure & Cities Sector, Smart Grid Division

Truck Trolley Economic Effects

SIEMENS

Additional Investment

- Fixed installation for Power supply
- Upgrade of trucks for Trolley-Assist

Benefits in Operation

- Shorter round trip time by higher speed under load conditions with trolley assist
- Increased haulage capacity per truck, usable for
 - → Reduced no. of trucks for same haulage target
 - \rightarrow Increase haulage of the pit with same no. of trucks
- Reduced Maintenance for Diesel Engine
- Difference in Energy costs

Other Effects

- Change in CO2 footprint, depending from source of E-Energy
- use of regenerative energy

\rightarrow Economic evaluation has to cover all different influences for a specific case

© Siemens AG 2012 Infrastructure & Cities Sector, Smart Grid Division

Swedish Budget Conditions Example Line Parameters

SIEMENS

Line parar	neters			
Section	Length m	Grade	Trolley loaded	Trolley empty
1	300	0,0%	0	0
2	750	8,0%	0	0
3	1000	8,0%	1	0
4	3000	0,0%	1	0
5	100	-8,0%	0	0
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
Total length	5150	(sign for loaded drive)	4000	0

© Siemens AG 2012

04-2012

Page 3

Swedish Budget Conditions Example Truck parameters

SIEMENS

Truck data				
Truck type	320 ton			
Empty weight Total weight with load Rolling resistance Auxiliary power Wheel motor rating		t t	power per ho	our
	unit	Diesel	Electro	
Max. speed loaded Max. speed empty	km/h km/h	50 50	50 50	
Power of diesel engine	kW	2536		at flywheel
Power of control unit	kW		3875	
Effectivity traction unit		0,898		
Effectivity of truck Effectivity of OCL/SST			0,898 0,85	
spec. fuel consumption	g / kWh	206		
Recuperation Availability Exploitation rate	0 94 89	0 -> no % %	1 -> yes	

© Siemens AG 2012

Swedish Budget Conditions Example Economic input - 1

Energy price level 9.00 SEK Diesel per I El per kWh 0.308 SEK Staff (driver) Driver per Truck 3 Yearly cost per driver 460,000 1000 SEK Truck costs Price per Diesel-Truck 46000 1000 SEK per truck Modification per Truck 3700 1000 SEK per truck Truck Maintenance Interval of rep Cost of repair Downtime SEK h h / repair Diesel motor 250 116000 8 El, motor Mode Diesel 2000 46000 8 Mode Trolley 1800 46000 8

SIEMENS

© Siemens AG 201

Page 5

I&C SG RE

Swedish Budget Conditions Example Economic input - 2

SIEMENS

Cost of fix	ed installation			
Substation				
	power per sub	ostation	7,5	MW
	unit price		9200	1000 SEK
OCL	price / km		14000	1000 SEK
Total price	electrification			1000 SEK
			(Inputvalue=0 ->	calculated from amount)
Number of	substations	5	(Inputvalue=-1 ->	> calculated from load)
Benefit off additional haulage		40	SEK / t	
CO2 Emm	ision Coefficient		combined incl.	Manuf./Transport
Diesel		3,13	kg/l	
Electricity			0	kg/kWh
	Energy conte	nt diesel	9,88	kWh/l

© Siemens AG 2012

Page 6

I&C SG RE

Swedish Budget Conditions Example Specific Results

SIEMENS

				Original	Truck-Trolley	Difference
	driving time		min	26,32	24,20	-8,04%
						and the second
		a round trip	min	34,32	32,20	-6,17%
Cost for e	nergy per cycl	е				
	Diesel		SEK	1063,14	445,19	
	Electricity		SEK	0,00	100,24	
	Energy per l	round	SEK	1063,14	545,43	-48,70%
Greenhou	ise-Gas Emissi	on				
	Diesel	(CO2/haulage)	kg/t	1,18	0,49	
	Electricity	(CO2/haulage)	kg/t	0,00	0,00	
	Total	(CO2/haulage)	kg/t	1,18	0,49	-58,13%
Haulage (Capacity per tr	uck				
12	max. haulag	e per hour	t/h	547,2	583,2	6,57%
	Daily haulag	e (practical)	t/d	10071,1	10733,1	6,57%
Electrifica	tion data					
				Original	Truck-Trolley	
	Length of O	CL	m	0	4000	
	Number of s	ubstations		0	5	

© Siemens AG 2012

I&C SG RE

Swedish Budget Conditions Example Specific Results for target haulage capacity

Calculation for fixed haulage capacity

rolley Difference
-16,67%
6 -11,19%
4 -48,70%
0 -45,31%
8 -16,67%
2 -45,02%
D B

© Siemens AG 2012

Page 8

Swedish Budget Conditions Example Specific results for fixed truck usage

SIEMENS

Calculation for fixed number of trucks

number of trucks	5	(Installation	see above)	
		Original	Truck-Trolley	Difference
Yearly haulage (Status)) Mt	18,4	19,6	6,57%
Specific costs				
Energy	SEK / t	3,71	1,90	-48,70%
Maintenance	SEK / t	1,06	0,66	-38,42%
Staff (driver)	SEK / t	0,38	0,35	-6,17%
Total operation	SEK / t	5,14	2,91	-43,47%
Total incl capital costs	SEK / t	6,40	4,70	-26,55%

© Siemens AG 2012

Page 9

I&C SG RE

Swedish Budget Conditions Example Monetary effects for defined mining capacity

nvestmer	nt		Original	Truck-Trolley	
	number of truc	ks	6	5	
	Trucks	1000 SEK	276000	248500	
	Fixed installation (power su	1000 SEK		102000	
	OCL	1000 SEK		56000	0> only total price
	SST	1000 SEK		46000	0> only total price
	Total	1000 SEK	276000	350500	
	Cost for Modification	1000 SEK		74500	
	Yearly capital cost	1000 SEK	27600	35050	
Annual co	ost (Planned yearly haulage)				Savings
	Energy	1000 SEK	61988	31802	30186
	Maintenance	1000 SEK	23464	12832	10631
	Staff (driver)	1000 SEK	8280	6900	1380
	Total operation	1000 SEK	93732	51534	42197
	Total incl capital costs	1000 SEK	121332	86584	34747
Savings fo	or operation and capital				
		1000 SEK		34747	
Return of	additional Investment	2,14	Years		

I&C SG RE

Swedish Budget Conditions Example Monetary effects for fixed truck usage

SIEMENS

Calculation of cost for a fixed number	of trucks			
Increase of H		city	6,57%	
Investment	5	Original	Truck-Trolley	
number of truc	ks	5	5	
Trucks	1000 SEK	230000	248500	
Fixed installation (power su	1000 SEK		102000	
OCL	1000 SEK		56000	
SST	1000 SEK		46000	
Total	1000 SEK	230000	350500	
Cost for Modification	1000 SEK		120500	
Yearly capital cost	1000 SEK	23000	35050	
Annual cost (Planned yearly haulage)				Savings
Energy	1000 SEK	68104	37236	30868
Maintenance	1000 SEK	19553	12832	6721
Staff (driver)	1000 SEK	6900	6900	0
Total operation	1000 SEK	94557	56969	37588
Total incl capital costs	1000 SEK	117557	92019	25538
Savings for operation and capital				
	1000 SEK		25538	
Return of additional Investment	Basis		Costs	Benefit
	SEK / t		5,14	40
Additional earnings by increased Haulage	1000 SEK		6215	48325
Return of additional Investment	Years		3,795	1,631

© Siemens AG 2012

Page 11

I&C SG RE

Truck Trolley Economic Benefits

Page 1

04-2012

I&C SG RE

© Siemens AG 2012 Infrastructure & Cities Sector, Smart Grid Division

Truck Trolley Economic Effects

SIEMENS

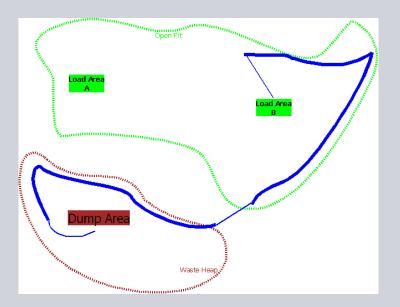
Additional Investment

- Fixed installation for Power supply
- Upgrade of trucks for Trolley-Assist

Benefits in Operation

- Shorter round trip time by higher speed under load conditions with trolley assist
- Increased haulage capacity per truck, usable for
 - → Reduced no. of trucks for same haulage target
 - \rightarrow Increase haulage of the pit with same no. of trucks
- Reduced Maintenance for Diesel Engine
- Difference in Energy costs

Other Effects


- Change in CO2 footprint, depending from source of E-Energy
- use of regenerative energy

\rightarrow Economic evaluation has to cover all different influences for a specific case

© Siemens AG 2012 Infrastructure & Cities Sector, Smart Grid Division

Truck Trolley – Sample Mine calculation Basic data

- 2 loading areas A and B
- Common dumping area on waste heap
- All ramps with constant gradient (Bold lines)
- For Truck Trolley operation all ramps are electrified
- Load / dump time : 5/2 minutes

Line parameter example load area B to dump area

Section	Length	Grade	Trolley
	m		loaded
1	300	0,0%	0
2	500	0,0%	0
3	1500	10,0%	1
4	100	0,0%	0
5	1500	10,0%	1
6	500	0,0%	0

Siemens AG 2012

SIEMENS

Page 3	04-2012	I&C SG RE	Infrastructure & Cities Sector, Smart Grid Division
--------	---------	-----------	---

Truck Trolley – Sample Mine calculation Technical truck parameters used for the samples

Truck ty	уре	550 t S	ample truck	– loading	capacity 310) t	
Empty w	eight			240	t		
Total we	ight with load			550	t		
Rolling r	esistance			0,02			
Auxiliary	v power			55	kW		
Wheel m	otor rating			4000	kW	power pe	r hour
			unit		Diesel	Electro	
Max. spe	ed loaded		km/h		50	50	
Max. spe	ed empty		km/h		35	35	
Power of	f diesel engine		kW		2400		at flywheel
Power of	f control unit		kW			5100	
Effectivit	ty traction unit				0,89		
Effectivit	ty of truck					0,898	
spec. fue	el consumption		g / kWh		220		
							© Siemens AG 2012
ge 4 04-2012			I&C SG RE Infrastructure & Citie		ure & Cities S	Sector, Smart Grid Division	

Truck Trolley – Sample Mine Main economic data used for samples *

Energy	price	level
	PIIOO	

•••			
Diese	el per l	0,90	USD
El pe	r kWh	0,077	USD
Truck co	sts		
Price	per Diesel-Truck	5000	1000 USD
Modi	ication per Truck	500	1000 USD
Cost of f	ixed installation		
Subs	tation unit price	1400	1000 USD
OCL	price / km	2000	1000 USD

CO₂ Emission Coefficient

Electricity	0,2	kg COx / kWh
-------------	-----	--------------

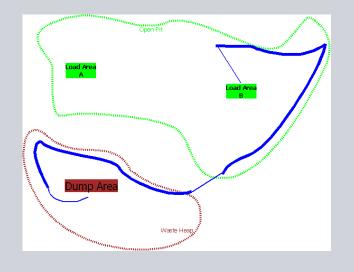
Further Input parameters

Page 5

Maintenance costs Additional Benefits for increased capacity

* All economic values are fictive values for this samples without relation to a specific mine

04-2012


I&C SG RE

Truck Trolley – Sample Mine Effects for a single round trip ($B \rightarrow$ waste heap)

Capacity effects

-		Diesel mode	Truck-Trolley	Difference
Duration of a round trip	min	37,06	29,64	-20,01%
Cost for energy per cycle	USD	160,72	67,54	-57,98%
Haulage Capacity per truck	t/h	501,9	627,5	25,02%

© Siemens AG 2012

Page 6

I&C SG RE

Truck Trolley – Sample Mine Effects for a single round trip ($B \rightarrow$ waste heap)

Results for a required haulage capacity of 20,1 Mt/year

			Diesel mode	Truck-Trolley	Difference
	Necessary number of trucks Investment	1000 USD	7 35000	5 41900	
Specif	ic costs				
-	Energy	USD / t	0,52	0,22	-57,98%
	Operation	USD / t	0,69	0,32	-53,18%
Annua	I costs				
	Energy	1000 USD	10408	4374	-6034
	Total operation costs	1000 USD	13844	6482	-7362
	Total incl. capital costs *	1000 USD	17344	10672	-6672

Return of additional Investment 1,03 Years *

* Capital costs for an interest rate of 10%

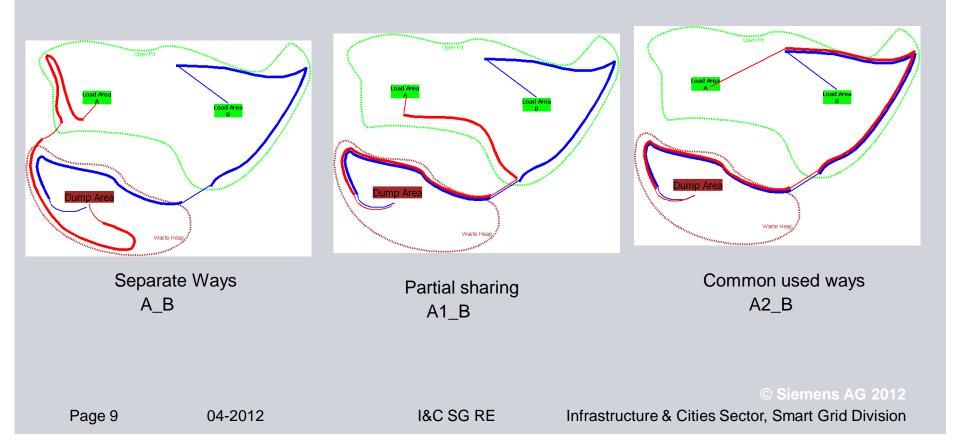
Page 7

Truck Trolley – Sample Mine Effects for a single round trip ($B \rightarrow$ waste heap)

Results for a fixed number of 5 trucks

			Diesel mode	Truck-Trolley	Difference
Haulage capacit	y	Mt/year	16,5	20,6	25,02%
Investment		1000 USD	25000	41900	
Specific costs					
Energy		USD / t	0,52	0,22	-57,98%
Operation		USD / t	0,67	0,32	-52,02%
Greenhouse-Gas En	nission				
Total	(CO2/haulag	e) kg/t	1,80	0,61	-66,07%
Annual costs					
Energy		1000 USD	8548	4491	-4058
Total operation	costs	1000 USD	11003	6599	-4403
Total incl. capita	Il costs*	1000 USD	13503	10789	-2713
Return of addition	nal Investme	5	* Capital costs for a	an interest rate of 10%	

0,72 Years (with a benefit of 5 USD per t additional haulage)


© Siemens AG 2012

I&C SG RE

Truck Trolley – Sample Mine Conjoint use of Routes

SIEMENS

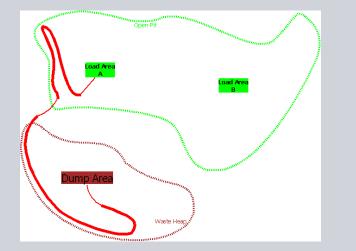
- 2 loading areas A and B
- Common dumping area on waste heap

Truck Trolley – Sample Mine Conjoint use of Routes

Amortisation time for 10 trucks with different route bundling

		separate ways	partial sharing	common_used
Route		A + B	A1 + B	A2 + B
Total trip length	km	16,200	12,400	10,400
OCS	km	6,000	4,500	3,000
Substation		12	9	6
Number of Trucks		10	10	10
haulage capacity	t/h	1301	1301	1255
Invest Truck Trolley	1000 USD	30600	26400	19400
Yearly energy savings with Truck Trolley	1000 USD	8404	8404	8116
Yearly savings with Truck Trolley	1000 USD	9135	9135	8806
Return on Invest *	Years	5,04	4,06	2,83
			* C	apital costs for an interest rate of 10%
				© Siemens AG 2012

Page 10


04-2012

I&C SG RE

Truck Trolley – Sample Mine Usage of route

SIEMENS

Route from loading area A to dump area

Line parameters load area a to dump area

Section	Length	Grade	Trolley	
	m	%	loaded	
1	300	0		
2	1500	10	1	
3	100	0		
4	1500	10	1	
5	300	0		

Calculation of same route for use with 3, 5 and 10 trucks

Page 11

I&C SG RE

Truck Trolley – Sample Mine Usage of route

Amortisation for route A as function of number of Trucks

Number of Trucks		3	5	10
Haulage capacity Diesel Trucks Haulage capacity Truck Trolley	Mt / year Mt / year	10,5 13,3	17,4 22,1	34,9 44,3
Investment Truck Trolley	1000 USD	12700	13700	16200
Yearly energy savings with Truck Trolley Yearly savings by Truck Trolley	1000 USD 1000 USD	2607 2839	4346 4732	8691 9463
Return on Invest *	Years	8,09	4,07	2,07

* Capital costs for an interest rate of 10%

© Siemens AG 2012

Page 12

Thank you for your attention

Page 13

04-2012

I&C SG RE

Siemens AG 2012
Infrastructure & Cities Sector, Smart Grid Division