Tailings Overview

Harvey McLeod October 2013

- ✓ What are tailings and what are their properties?
- ✓ What are the types of dams and containment of tailings?
- ✓ What are the key design features?
- ✓ What can go wrong?
- ✓ What is best management practice?

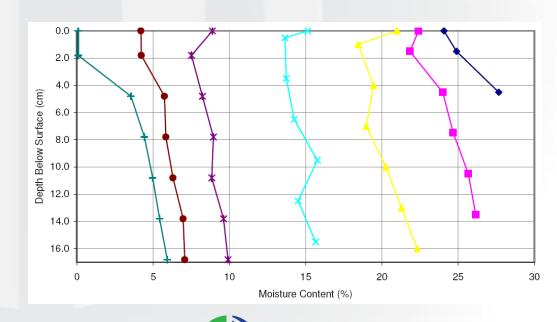
Tailing Types: copper, gold, iron ore, bauxite, oil sands, massive sulphide, phosphate, laterite nickel

Geotechnical Properties: settling and consolidation behaviour, permeability, gradation, plasticity,

Geochemistry: ARD potential, neutral leaching

Process Modifications: water (thickening, paste, dewatered); geochemistry (sulphide floatation)

Tailings Evaporation Properties


Evaporation Cell Tests

- Evaporation of ~ 40 mm (4 days in summer) results in desaturation at surface at ~ 80% solids
- A crust was formed on the surface, due to clays (8%) or precipitates (TDS ~ 300 mg/L)

lohn Crippen Berger

6.5 inch slump test and tailings densities

Dewatering Technologies

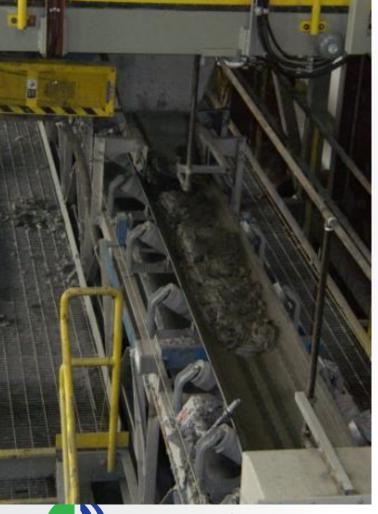
Thickened and paste tailings

- Less water in tailings.
- Tailings is saturated and requires a dam for stability in seismic areas.
- Non-segregating tailings reduces permeability
- Questionable cost or technical advantage
- Water recovery potential Dewatered tailings
 - Expensive.
 - Requires compaction for seismic stability.

De-sulphidized tailings

Myra Falls Paste Plant

Paste Plant and Superflow Thickener



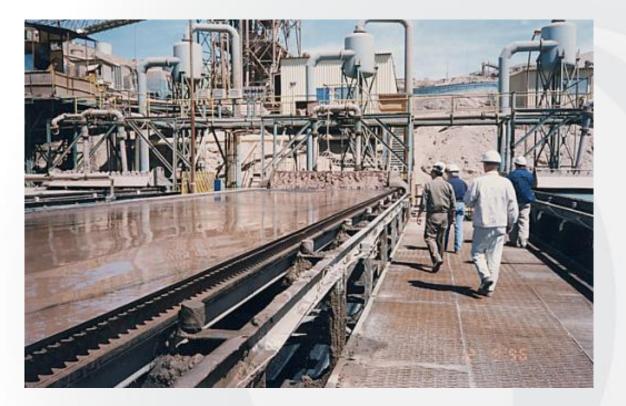
Vacuum filter and filtered tailings

Paste tailings mixing unit

Consolidation bleed from paste tailings & 5% cone

Greens Creek Filtered Tailings Disposal Site

Tailings de-watered at mill using pressure filters



Placement and spreading of tailings with a dozer

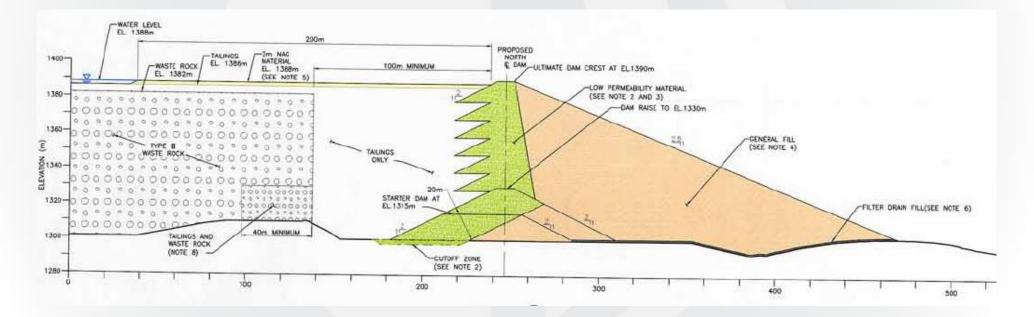
Horizontal Belt Vacuum Filters – Mantos Blancos,

25,000 tpd to single stage cyclones

Cyclone underflow filtered, overflow thickened & stored separately

Filtered material on the belt. Note the high water content of the feed material.

Cycloned/Dewatered Tailings Cone



Centerline Dam

Reduces fills by about 30%

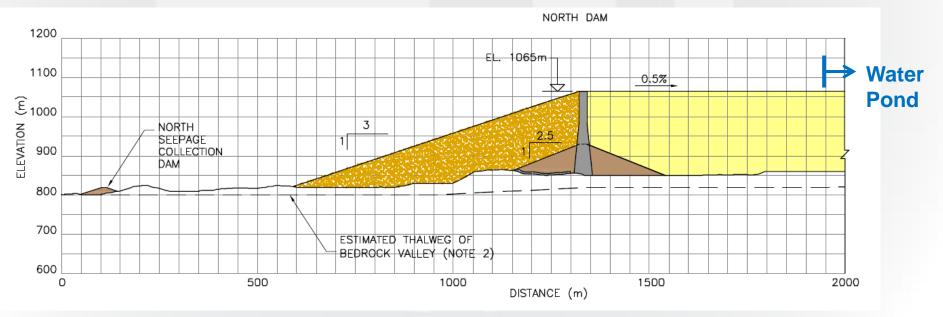
Upstream stability is not an issue – in high seismic areas with high raises you may need to have a "slight" d/s slope.

Core zones, and even liners, can be placed vertically.

55 Years of Operation and Closure With Cyclone Sand Dams

Hydro-Cyclone Station

Figure 1: Secondary cyclone (flow comes in from pipe on the right, overflow exits through pipe on the near side, cycloned sand slurry exits from the far side)



Cyclone Sand Dams

- ✓ Water kept away from dams to improve stability
- ✓ Till core to reduce seepage
- ✓ 3H:1V slopes for seismic stability and to facilitate reclamation

Gibraltar Cyclone Dam

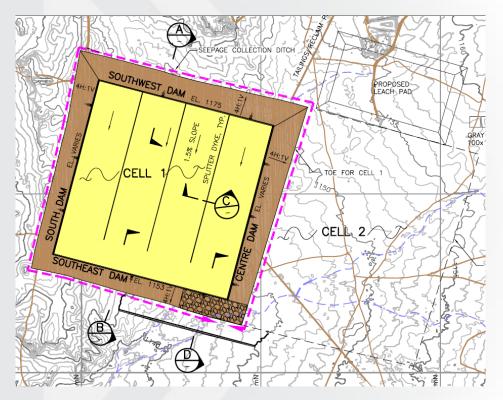
Upstream Construction : Vale Inco R4, Sudbury, Ontario

Inco R4, Sudbury

Civil

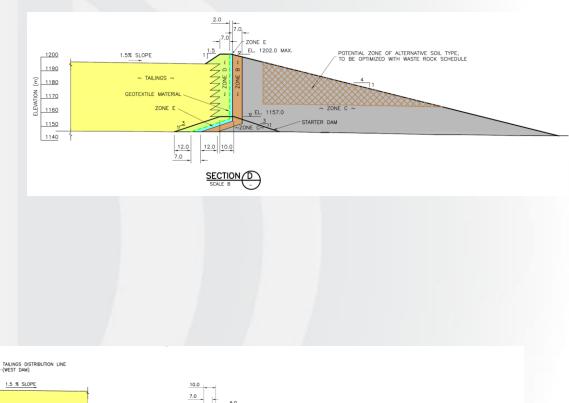
- Mine production 36,000 tpd
- Height of Dams, 30 m, crest length, 5 km
- Total storage 200 Mt
- EPCM
- Tailings management
- Slurry cut off
- Electrical/Mechanical Pipeline

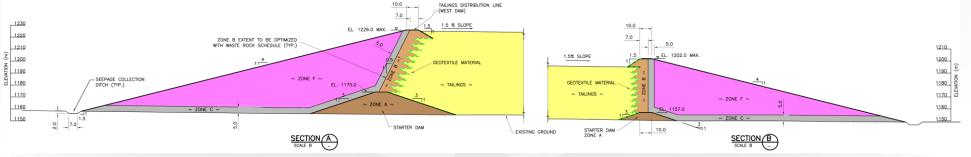
Environmental


- Closure plan 14 mines, 2 smelters, 2 refineries
- Revegetation, lowering, relocation
- Biological assessment, fish and wildlife
- Pits and underground

Using the benefit of tailings in arid environments

- Consolidated tailings in desert climates eliminates piping risk and need for filters.
- Water savings can be achieved with cell construction
- Dust control water can be reduced.
- Dry closure landscapes


Escondida and Oyu Tolgoi



Water control - dry climates

Technical Components


Depressurization well - artesian flow

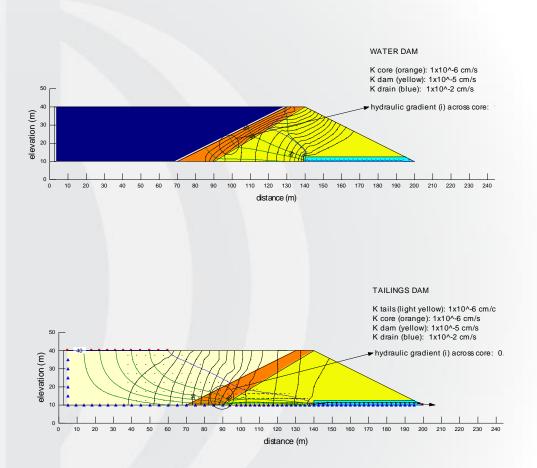
Geosynthetics

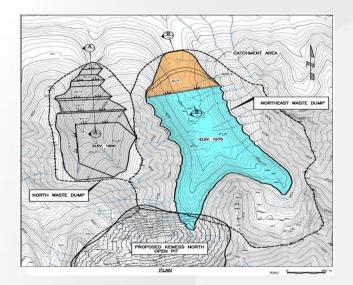
- Shunned for dams due to concerns with longevity.
- Tailings/geomembrane liners dramatically decrease potential seepage.
- Geotextile filter fabrics can be used for tailings dams with "dry" closure as gradients and piping risks do not exist over the long term.

- 1. A liner bedding layer is required
- 2. A liner protection layers is required to prevent ice damage
- 3. Drains are required over or between liners to reduce the head on the liner to reduce seepage
- 4. Geomembranes only last, maybe, a few hundred years.
- 5. QA/QC of liners is of "critical" importance.

Tailings Reduce Hydraulic Gradients and make a Safer Dam

- Grouting of core zone foundations normally eliminated.
- Width of core zone can be reduced to reflect lower gradients
- Risk of "piping" failure is lower than for a water dam.
- Hydraulic fractures "selfhealed" with tailings


Highland Valley Copper


KCB avoids pervious zones on the upstream side of tailing dams

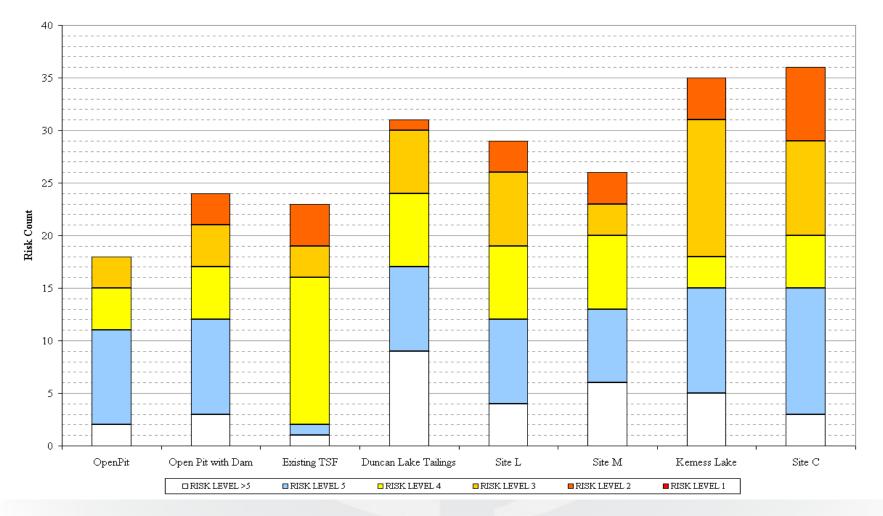
- Upstream pervious shell was designed for water dams for rapid drawdown condition (does not apply to tailing dams)
- Negates gradient reduction through the tailings.
- Increases risk of piping failure.
- Requires greater width of impervious zone to meet gradient requirements across the core of the dam

Alternative Assessment - Typical Example

OPEN PIT WITH DAMS					1	CONSEQUENCES			CES	CONFIDENCE		1			
COMPONENT/SUB- COMPONENT	DMPONENT/SUB- T.D. No. FAILURE MODE AND CAUSE PERFORM		FRORECT STAGE	4006113301	WATER QUALITY	BORESCAL	COMMENTINGCIAL	COST	LIVIL OF CONFIDINCE	ANTITE UKILINOD	COMPENSATING FACTORS AND ADEQUACY OF EXISTING CONTROLS CONTROLS CONFIDENCE)		RISK LEVEL	POIN	
100 SERIES DAM										-					
	OP-100.1	DAM FAILURE	RELEASE OF ALL TAILINGS AND WATER	OVCL	D	4	4	3	5	м	D	DESCH GEOTECHNICAL DRILLING PROGRAM-	D, 5	•	5
	OP-100.2	UNKNOWN SOIL CONDITIONS	HIGHER DAM COSTS	00	с	1	5	1	4	L	ъ	DESIGN FOR FLAT SLOPES	B, 4		25
FILTERS, DRAINS, FILL, FOUNDATION	OP-300.3	LACE OF CONSTRUCTION MATERIALS	HIGHER DAM COSTS	C/OVCL	σ	1	3	1	3	L	в	GEOTECHNICAL DELLING PROGRAM	B. 3		
	OP-308.4	DAM FOUNDATION FAILURE TOWARDS EXMESS CREEK	CANNOT BAISE DAM BECAUSE SLOPE EXTENDS TOWARD THE CREEK	CVO	в	2	2	2	4	L			A. 4	3	15
	OP-100.5	EXPANDED FOOTFEINT WITH NO FAILURE	LOSS OF HABITAT IN DAM AREA	COVER	~	1	2	1	2	н	A		A, 2		5
200 SERIES IMPOUNDMENT									_			TORN WATER FOR ONE WAR AND DOR			
	OP-200.1	DESUFFICIENT SETTLING TIME	POOR RECLAIM WATER	0	^	-1	- 1	- 1	3	м	^	EXEPTING POND-ESTABLISH WELLS IN WASTE ROCK-BAST SIDE PT	A, 3		21
	OP-200.2	TAILINGS GEOCHEMISTRY IS WORSE THAN PREDICTED	LEACHING OF METALS AND DEGRADED SURFACE WATER	OVCL	с	3	3	-1	3	м	C	LOW PERMEABILITY COVER AND TREATMENT	C, 3	5	1
	OP-200.3	PIT WALL FAILURE	SHUTDOWN OPERATIONS	0	c	1	1	1	3	м	c	DESNIA AND MONITOR, EFFECT OF FLOODED FIT ON WALL STABILITY ASSESSED	C, 3	5	1
EVERSION CHARNELS CONFUTT, TALENOR BACK, BERRAUM DOR HLOFF, DECART, SEEFACE POINT ESLOCATION, TALES FORAGE FOND LEVEL, DIVERSION CHARNEL BOUTE	OP-200.4	SEEPAGE OF CONTAMINATED WATER	DEGRADATION OF GROUNDWATER AROUND THE OPEN PIT, POTENTIAL CONNECTION TO REMESS CREEK	OVCL	c	2	2	1	3	м	c	MONTICEERS WELLS, BYDROLOGY FUULES REQUIRED TO EVALUATE FOTENTIAL SEEPAGE	C, 3		
	OP-200.5	REMESS SOUTH MINE STOP EARLY	REDUCED STORAGE VOLUME AND LIPE OF OPEN PIT STORAGE	0	c	1	- 1	1	2	м	c		0, 2	>5	
	OP-200.6	SETTLED DENSITY LESS THAN EXPECTED	PUMP TO DUNCAN SOONER HEGHER. COSTS	0	c	1	3	1	2	м	C	SETTLENG TESTS, STUDIES	C, 3	5	1
-	OP-200.7	HIGHER RATIO OF SULPHIDE TO HEUTHAL TAILINGS DUE TO CTCLONING	ARD FOTENTIAL AND LEACHENG OF METALS DECREASING CLOSURE COST	OVCL	в	3	з	1	4	L	~	HDISHG AND DESIGN	A, 4		15
300 SERIES WATER RECLAIM	OP-200.8	DICTRACED MINE RECEIVED	REQUIRE NEW TAILINGS FACILITY	0	A.	4	4	3	4	м	A	NULD NEW FACILITY	A.4	2	15
ADDIE WATER RECEARD	OP-300.1	SINKING OF BARON	POTENTIAL SHUTDOWN	0	e			1	2	м	c	USE EXISTING SYSTEM FOR BACKUP	C. 2	-5	
	OP-300.2	SHUTDOWN OF EXISTING SYSTEM	REDUCED WATER FLOW, SHUT DOWN PART OF MILL	0	в	1	1	1	2	м	ъ	DESIGN AND ENSURE BACK OF WATER SUPPLY	B. 2	5	1
PUMP BARGES, PUMP BACK SYSTEMS, PUMPERG	OP-300.3	DIRTY RECLAIM WATER	HIGH FUMP MADITENANCE, FUMP CLANDS	0	в	1	3	1	2	м	ъ	STORE WATER FOR ONE YEAR AND USE EXEPTING PONDRETABLER WELLS IN WASTE ROCE-EAST SIDE PT	B, 2		
	OP-300.4	WATER SHORTAGE	DISRUPTION OF PRODUCTION	0	р	1	1	1	2	L	*	PROPER DESIGN AND IMPLEMENTATION- DRAW DOWN DUNCAN AND TEP	A, 2	4	
400 SERIES TAILINGS DISTRIBUTION															
TAILINGS FIFELINE, CYCLONE	OP-400.1	FREEZENG OR SANDENG OF LENES	TEMPORARY SHUTDOWN.	0	в	2	2	2	2	21	ъ	DESIGN WITH DOWNHELL SLOPE	B, 2	5	1
STATIONS, DEWATERENG PLANT, THECKENERS	OP-400.2	FIFTLIFE BREAK	TEMPORARY SHUTDOWN & POTENTIAL DISCHARGE	0	c	3	3	2	2	н	c	CONTAINMENT, DETECTION & DESIGN	C, 3	5	,
500 SERIES CLOSURE		TAILINGS OROCHEMISTRY IS WORKS	REQUIRS LOW FERMEABILITY COVER.												
	OP-500.1	THAN PREDICTED	OR FLOODED PT	GT	в	3	3	2	3	м	. 10	DESIGN, TESTING AND ENGINEERING	8.3		
COVERS, CLOSURE SPILLWAY, WATER	OP-500.2		REQUIRE ADDITIONAL VEGETATION INCREASES DIFFICULTY OF	CL	0	1	4	1	2	м	C	TEST PLOT PROGRAM	C, 4	•	
TREATMENT PLANT, FDIAL DAM	OP-900.3	TAILINGS IS TOO "SOFT" TO RECLAIM	RECLAMATION	CL	в	1	4	1	2	м	ъ	PLAN FOR BOTH WET AND DRY CLOSURE	B, 4	3	2
	OP-500.4		CREATES CHANNELS AND RELEASES TAILINGS	CL	c	3	3	2	2	L	c	ENSURE SPILLWAY IS IN ROCK, OR APPROPRIATELY ARMOURED	C. 3	8	
	OP-500.5	DO NOT MEET WATER QUALITY OBJECTIVES	RELEASE FOOR WATER QUALITY	CL	в	3	.9	- 1	2	L	A	DESIGN, MONITORING	A. 3		2
					_				_					SUM	

		CAPITAL, OPERATING AND CLOSURE COSTS*							TOTAL COST SUMMARY				
FACILITY	Foundations & Dams	Water Management	Tailings Transport & Infrastructure	Environment, Water Treatment & Closure	Waste Rock Incremental Haulage	Engingeering, EIA, Monitoring	TOTAL CAPITAL COST	TOTAL OPERATING COST	CONTINGENCY (20% for Option 1) (30% for Option 2)	TOTAL COST			
Option 1													
Duncan Lake (Tailings and Waste Rock)	\$ 58,754,955	\$ 4,700,000	\$ 32,425,000	\$ 25,800,000	\$ 42,400,000	\$ 8,207,198	\$ 65,635,200	\$106,651,953	\$ 25,977,431	\$ 198,264,584			
TOTAL	6: \$ 58,754,955	\$ 4,700,000	\$ 32,425,000	\$ 25,800,000	\$ 42,400,000	\$ 8,207,198	\$ 65,635,200	\$106,651,953	\$ 25,977,431	\$ 198,264,584			
Option 2													
RAISE EXISTING DAM 10m (tailings)	\$ 50,630,000	\$ 2,050,000	\$ 39,230,000	\$ 12,500,000	\$-	\$ 4,574,600	\$ 942,000	\$108,042,600	\$ 23,245,380	\$ 132,229,980			
SITE M, (70 m high dam) near airstrip (tailings)	\$365,169,623	\$ 4,370,000	\$ 70,218,000	\$ 10,650,000	\$-	\$ 26,072,377	\$313,603,312	\$162,876,688	\$ 134,433,600	\$ 610,913,600			
OPEN PIT FILLING (tailings)	\$ 571,000	\$ 1,360,000	\$ 8,534,000	\$ 75,000	\$-	\$ 1,032,400	\$ 9,208,600	\$ 2,363,800	\$ 3,104,520	\$ 14,676,920			
EAST CIRQUE (waste rock)	\$ 86,330,000	\$ 1,450,000	\$-	\$ 4,650,000	\$ 10,000,000	\$ 5,945,800	\$ 93,046,800	\$ 15,329,000	\$ 29,512,740	\$ 137,888,540			
NORTH CIRQUE (temporary waste rock storage)	\$ 3,206,000	\$ 7,300,000	\$-	\$ 2,000,000	\$112,000,000	\$ 1,150,360	\$ 4,458,360	\$121,198,000	\$ 4,096,908	\$ 129,753,268			
TOTAL	6: \$505,906,623	\$ 16,530,000	\$117,982,000	\$ 29,875,000	\$122,000,000	\$ 38,775,537	\$421,259,072	\$409,810,088	\$ 194,393,148	\$ 1,025,462,308			

Risk Binning Example


Risk Review Chart

						LIKELIHOOD	LIKELIHOOD							
		E - CONCEIVABLE BUT IMPROBABLE D - UNLIKELY				C - POSSIBLE		B - LIKELY		A - ALWAYS CERTAIN				
	5-CATASTROPHIC	RISK LEVEL 5	E, 5	RISK LEVEL 4 CTP-100.3	D, 5	RISK LEVEL 3	C.5	RISK LEVEL 2	B, 5	RISK LEVEL 1	Α.5			
3		RISK LEVEL >5	E, 4	RISK LEVEL 5	D.4	RISK LEVEL 4	C,+	RISK LEVEL 3	B, 4	RISK LEVEL 2	1 3.4			
E	4 - MAJOR					CTP-400.3		CTP-100.2		CTP-100.1, CTP-200.9, CTP-28 200.14, CTP-400.6, CTP-4				
CI		RISK LEVEL >5	E. 3	RISK LEVEL >5	D, 3	RISK LEVEL 5	C. 3	RISK LEVEL 4	B, 3	RISK LEVEL 3	A. 3			
NSEQUEN	3 - MODERATE					CTP-100.5, CTP-200.1, CTP-200 200.3, CTP-200.4, CTP-200.5, CT CTP-200.7, CTP-500.1, CTP-	P-200.6,	CTP-200.8, CTP-500.3, CTP-500.4, 500.5	CTP-	CTP-100.4, CTP-100.6, CTP-20 200.12, CTP-400.2, CTP-400.5, (
NO		RISK LEVEL >5	E, 2	RISK LEVEL >5	D, 2	RISK LEVEL >5	C, 2	RISK LEVEL 5	B, 2	RISK LEVEL 4	A, 2			
c	2 - MINOR					CTP-300.1, CTP-400.1		CTP-300.2, CTP-400.4						
		RISK LEVEL >5	E, 1	RISK LEVEL>5	D, 1	RISK LEVEL >5	C, 1	RISK LEVEL >5	B, 1	RISK LEVEL 5	A, 1			
	1 - INSIGNIFICANT								121 A					

All options have risks – understand and manage the risks

Parameter	Lower Grade (e.g. porphyry copper)	Higher Grade (e.g. gold)
Value of ore/t of tailings	\$50.00/t	\$300/t
Cost of tailings disposal	\$ 0.50/t	\$ 2.50/t
Dam height	50 m to 300 m	10 m to 50 m
Milling rate	120,000 tpd	7,000 tpd
Incremental cost of tailings to ore	Very High	Moderate

What are the consequences of tailings incidents?

Туре	Effect	Cost
Design/environment /social issues	Permitting delays	~\$1 Million
Dam incident e.g spill or release	Short term environmental effect. Fine,	~ 1 Million
Dam failure	Major or catastrophic effect	\$10 M to > \$1 B Loss of reputation

Tailing Dam Failure vs Water Dam Failure

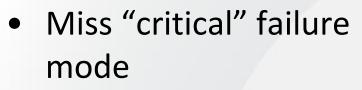
Tailing Dams

- Tailings solids can oxidize and/or leach metals.
- Tailings behave as a heavy fluid versus water.
- Dam Break ; slurry and water

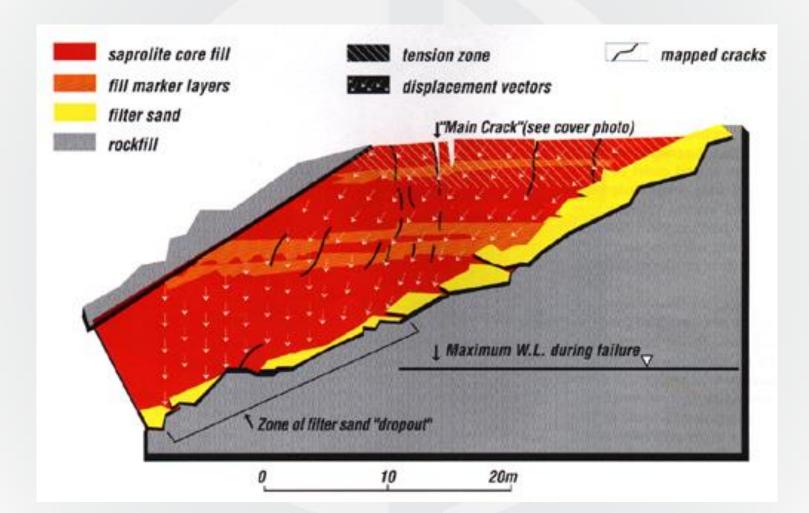
Dam Incidents

Peru – Rockfill on Soft Clay

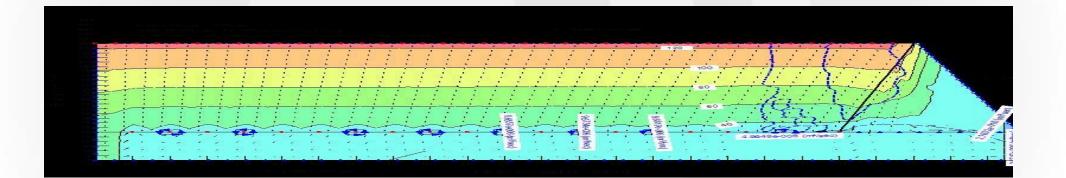
Static Liquefaction


(Sullivan Mine, B.C)

Bedding Plane (Residual) Failure



- Flood criteria abused
- Closure design not "robust"
- Optimistic design
- ARD/ML



Hydraulic Gradients

Underdrain pipes that can be "clogged" by consolidated tailings and are at risk of movement or breakage leading to piping failures.

Reducing Water Management Risk

- Redundant spillways
- "Robust" storage of floods
- Closure "idiot" proofing of flood water release
- Avoid pipe inlets/decants



Tailings Risk – Assume the unexpected

Build in "robustness"

- Diversions will ice up or infill with sediment
- Spillways will get blocked with debris
- Operators will make mistakes
- QA/QC will vary

Closure

Design for Closure at all Phases

- Physical stability water & seismic
- Chemistry stability
- Environment stability
- Social stability

Water Quality

- Monitor and if water quality exceeds discharge limits:
 - Pump water to open pit
 - Divert surface clean water
 - Raise dams
 - Treat portion of water

Reclamation

- Testing of plant species
- Habitat enhancement with liquid fertilizers
- Optimization of final geometry to suit reclamation
- Refinement of plan to include 1st Nations input to final land/water use objectives

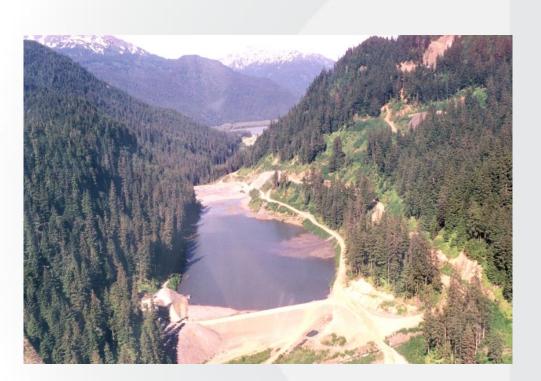
Dam Safety

- Long term care & maintenance Monitoring and spillway maintenance
- Financial bonding and responsibility for long term

Closure Plan-Lake Reclamation Porphyry Copper Experience – Highland Valley

Trojan

Highmont (wetlands)


Reclamation

Re-vegetated Surface of Closed Brenda Cyclone Tailings Dam

Closure Plans can be Successful

- Tailings management practices continue to evolve and improve
- ICOLD, ANCOLD, MAC Guidelines continue to be developed to assist the industry.
- Environmental compliance components are increasing and Regulators are becoming very risk adverse.
- Tailings is not a "low" level science and training at all levels is required.

QUESTIONS?

